T.P.Nº 2 "Instrumentos"

En electrónica, una fuente de alimentación es un dispositivo que convierte la tensión alterna de la red de suministro, en una o varias tensiones, prácticamente continuas, que alimentan los distintos circuitos del aparato electrónico al que se conecta (ordenador, televisión, impresora, router, etc.).




Las fuentes de alimentación, para dispositivos electrónicos, pueden clasificarse básicamente como fuentes de alimentación lineales y conmutadas. La lineales tienen un diseño relativamente simple, que puede llegar a ser más complejo cuanto mayor es la corriente que deben suministrar, pero sin embargo su regulación de tensión es poco eficiente. Una fuente conmutada, de las misma potencia que una lineal, será más pequeña y normalmente más eficiente pero será más compleja y por tanto más susceptible a averias.


Fuentes de alimentación lineales Las fuentes lineales siguen el esquema: transformador, rectificador, filtro, regulación y salida. En primer lugar el transformador adapta los niveles de tensión y proporciona aislamiento galvánico. El circuito que convierte la corriente alterna en continua se llama rectificador, después suelen llevar un circuito que disminuye el rizado como un filtro de condensador. La regulación, o estabilización de la tensión a un valor establecido, se consigue con un componente denominado regulador de tensión. La salida puede ser simplemente un condensador.




Una fuente conmutada es un dispositivo electrónico que transforma energía eléctrica mediante transistores en conmutación . Mientras que un regulador de tensión utiliza transistores polarizados en su región activa de amplificación, las fuentes conmutadas utilizan los mismos conmutándolos activamente a altas frecuencias (20-100 Kilociclos típicamente) entre corte (abiertos) y saturación (Cerrados). La forma de onda cuadrada resultante es aplicada a transformadores con núcleo de ferrita (Los núcleos de hierro no son adecuados para estas altas frecuencias) para obtener uno o varios voltajes de salida de corriente alterna (CA) que luego son rectificados (Con diodos rápidos)y filtrados (Inductores y capacitores)para obtener los voltajes de salida de corriente continua (CC). Las ventajas de este método incluyen menor tamaño y peso del núcleo, mayor eficiencia por lo tanto menor calentamiento. Las desventajas comparándolas con fuentes lineales es que son mas complejas y generan ruido eléctrico de alta frecuencia que debe ser cuidadosamente minimizado para no causar interferencias a equipos próximos a estas fuentes.




Fuentes de alimentación conmutadas Las fuentes conmutadas tienen por esquema: rectificador, conmutador, transformador, otro rectificador y salida. La regulación se obtiene con el conmutador, normalmente un circuito PWM (Pulse Width Modulation) que cambia el ciclo de trabajo. Aquí las funciones del transformador son las mismas que para fuentes lineales pero su posición es diferente. El segundo rectificador convierte la señal alterna pulsante que llega del transformador en un valor continuo. La salida puede ser también un filtro de condensador o uno del tipo LC.




Las ventajas de las fuentes lineales son una mejor regulación, velocidad y mejores características EMC. Por otra parte las conmutadas obtienen un mejor rendimiento, menor coste y tamaño.




Especificaciones Una especificación fundamental de las fuentes de alimentación es el rendimiento, que se define como la potencia total de salida entre la potencia activa de entrada. Como se ha dicho antes, las fuentes conmutadas son mejores en este aspecto.




El factor de potencia es la potencia activa entre la potencia aparente de entrada. Es una medida de la calidad de la corriente.




Aparte de disminuir lo más posible el rizado, la fuente debe mantener la tensión de salida al voltaje solicitado independientemente de las oscilaciones de la línea, regulación de línea o de la carga requerida por el circuito, regulación de carga.




Fuentes de alimentación especiales Entre las fuentes de alimentación alternas, tenemos aquellas en donde la potencia que se entrega a la carga está siendo controlada por transistores, los cuales son controlados en fase para poder entregar la potencia requerida a la carga.


Otro tipo de alimentación de fuentes alternas, catalogadas como especiales son aquellas en donde la frecuencia es variada, manteniendo la amplitud de la tensión logrando un efecto de fuente variable en casos como motores y transformadores de tensión




ALIMENTACION

Pila:


Una pila eléctrica es un dispositivo que convierte energía química en energía eléctrica por un proceso químico transitorio, tras de lo cual cesa su actividad y han de renovarse sus elementos constituyentes, puesto que sus características resultan alteradas durante el mismo. Se trata de un generador primario. Esta energía resulta accesible mediante dos terminales que tiene la pila, llamados polos, electrodos o bornes. Uno de ellos es el polo positivo o ánodo y el otro es el polo negativo o cátodo .

Baterìa de Litio:
El voltaje nominal de las pilas de Litio es de 3V, lo cual las hace apropiadas para casi todas las aplicaciones de electrónica industrial.
Tienen una vida de unos 4-5 años para un uso normal.
El polo positivo está hecho de dióxido de manganesio, que es muy estable químicamente y proporciona a la pila una durabilidad mayor. La descarga de estas pilas es de un 2% o menos.
El electrolito usado en estas pilas está protegido contra las filtraciones. Por ello son pilas ideales para aplicaciones de Back-Up.
Son ultracompactas y ligeras.
El rango de temperatura está entre -20ºC y +70ºC

Baterìa de Gel:


 
LAS BATERIAS DE GEL TIENE LA SIGUIENTE COMPOSICION:
Se añade una agente gelificante al electrolito para reducir el movimiento dentro de la carcasa de la batería. Muchas baterías de gel utilizan también válvulas unidireccionales en vez de orificios abiertos, lo que ayuda a que los gases internos normales se vuelvan a recombinar con el agua de la batería, reduciendo así la emanación de gases.
LAS BATERIAS DE GEL TIENEN LAS SIGUIENTES CARACTERISTICAS GENERALES :
Diseño de válvula reguladora
Larga vida estante
Flexibilidad de diseño
Recuperación Profunda de la descarga
Alto Indice de descarga
Gama de la temperatura de operación.
Larga vida de Servicio
Seguridad de operación


Fuente Regulable:



Uno de los instrumentos mas requeridos en el laboratorio electrónico es la fuente de alimentación regulable, la cual permite alimentar cualquier circuito bajo prueba o desarrollo con la tensión y corriente que estos precisen

Fte. Rectificadora(con puente de diodo y capacitor):
Variac:


             un variac es un transformador toroidal que tiene bobinada la ultima capa de forma de aparente como un gran reostato, sobre esa capa que tiene el esmalte superficial de la parte superior quitado, desliza un contacto, variando el numero de espiras de esa forma (mecanica como un reostato, pero elèctrica como un trafo de espiras variables) puedes variar la tension.


 

Estabilizador de tensión:


Es un tipo especial de transformador en el que el núcleo se satura cuando la tensión en el primario excede su valor nominal. Entonces, las variaciones de tensión en el secundario quedan limitadas. Tenía una labor de protección de los equipos frente a los cambios en la red. Este tipo de transformador ha caído en desuso con el desarrollo de los reguladores de tensión electrónicos, debido a su volumen, peso, precio y baja eficiencia energética.
OSCILOSCOPIO ANALOGICO
La tension a medir se aplica a las placas de desviación vertical de un tubo de rayos catodicos (utilizando un amplificador con alta impedancia de entrada y ganancia ajustable) mientras que a las placas de desviación horizontal se aplica una tensión en diente de sierra (denominada así porque, de forma repetida, crece suavemente y luego cae de forma brusca). Esta tensión es producida mediante un circuito oscilador apropiado y su frecuencia puede ajustarse dentro de un amplio rango de valores, lo que permite adaptarse a la frecuencia de la señal a medir. Esto es lo que se denomina base de tiempos.
En la Figura se puede ver una representación esquemática de un osciloscopio con indicación de las etapas mínimas fundamentales. El funcionamiento es el siguiente:
En el tubo de rayos catódicos el rayo de electrones generado por el catodo y acelerado por el anodo llega a la pantalla, recubierta interiormente de una capa fluorescente que se ilumina por el impacto de los electrones.
Si se aplica una diferencia de potencial a cualquiera de las dos parejas de placas de desviación, tiene lugar una desviación del haz de electrones debido al campo electrico creado por la tensión aplicada. De este modo, la tensión en diente de sierra, que se aplica a las placas de desviación horizontal, hace que el haz se mueva de izquierda a derecha y durante este tiempo, en ausencia de señal en las placas de desviación vertical, dibuje una línea recta horizontal en la pantalla y luego vuelva al punto de partida para iniciar un nuevo barrido. Este retorno no es percibido por el ojo humano debido a la velocidad a que se realiza y a que, de forma adicional, durante el mismo se produce un apagado (borrado) parcial o una desviación del rayo.
Si en estas condiciones se aplica a las placas de desviación vertical la señal a medir (a través del amplificador de ganancia ajustable) el haz, además de moverse de izquierda a derecha, se moverá hacia arriba o hacia abajo, dependiendo de la polaridad de la señal, y con mayor o menor amplitud dependiendo de la tensión aplicada.
Al estar los ejes de coordenadas divididos mediante marcas, es posible establecer una relación entre estas divisiones y el periodo del diente de sierra en lo que se refiere al eje X y al voltaje en lo referido al Y. Con ello a cada división horizontal corresponderá un tiempo concreto, del mismo modo que a cada división vertical corresponderá una tensión concreta. De esta forma en caso de señales periódicas se puede determinar tanto su período como su amplitud.
El margen de escalas típico, que varía de microvoltios a unos pocos voltios y de microsegundos a varios segundos, hace que este instrumento sea muy versátil para el estudio de una gran variedad de señales
.
OSCILOSCOPIO DIGITAL

En la actualidad los osciloscopios analógicos están siendo desplazados en gran medida por los osciloscopios digitales, entre otras razones por la facilidad de poder transferir las medidas a una computadora personal o pantalla LCD.
En el osciloscopio digital la señal es previamente digitalizada por un conversor analógico digital. Al depender la fiabilidad de la visualización de la calidad de este componente, esta debe ser cuidada al máximo.
Las características y procedimientos señalados para los osciloscopios analógicos son aplicables a los digitales. Sin embargo, en estos se tienen posibilidades adicionales, tales como el disparo anticipado (pre-triggering) para la visualización de eventos de corta duración, o la memorización del oscilograma transfiriendo los datos a un PC. Esto permite comparar medidas realizadas en el mismo punto de un circuito o elemento. Existen asimismo equipos que combinan etapas analógicas y digitales.
La principal característica de un osciloscopio digital es la frecuencia de muestreo, la misma determinara el ancho de banda máximo que puede medir el instrumento, viene expresada generalmente en MS/s (millones de muestra por segundo).
La mayoría de los osciloscopios digitales en la actualidad están basados en control por FPGA (del inglés Field Programmable Gate Array), el cual es el elemento controlador del conversor analógico a digital de alta velocidad del aparato y demás circuitos internos, como memoria, buffers, entre otros.
Estos osciloscopios añaden prestaciones y facilidades al usuario imposibles de obtener con circuitería analógica, como los siguientes:
  • Medida automática de valores pico, máximos y mínimos de señal. Verdadero valor eficaz
  • Medida de flancos de la señal y otros intervalos.
  • Captura de transitorios
  • Cálculos avanzados, como la FFT para calcular el espectro de la señal.      
TUTORIAL PARA USO DE OSCILOSCOPIO DIGITAL PARTE 1 
 .



    TUTORIAL PARA USO DE OSCILOSCOPIO DIGITAL PARTE 2 






    GENERADOR DE FUNCIONES

                     Un Generador de Funciones es un aparato electrónico que produce ondas senoidales, cuadradas y triangulares, además de crear señales TTL. Sus aplicaciones incluyen pruebas y calibración de sistemas de audio, ultrasónicos y servo.
    Este generador de funciones, específicamente trabaja en un rango de frecuencias de entre 0.2 Hz a 2 MHz. También cuenta con una función de barrido la cual puede ser controlada tanto internamente como externamente con un nivel de DC. El ciclo de máquina, nivel de offset en DC, rango de barrido y la amplitud y ancho del barrido pueden ser controlados por el usuario. 

    Para màs informaciòn sobre el generador de funciones, sus distintos tipos de aplicaciones,funciones y còmo usarlo, ingresà en el siguiente link: http://www.forosdeelectronica.com/tutoriales/generador.htm